Network Security: Broadcast and Multicast Security, Anonymity

Tuomas Aura, Microsoft Research, UK

Outline

- Broadcast and multicast
- Receiver access control (i.e. data confidentiality)
- Multicast authentication
- DoS protection
- Anonymity and privacy
- High-latency anonymous routing
- Low-latency anonymous routing Tor

Future of multicast and broadcast?

- Multicast tree vs. P2P overlay multicast protocols
- Youtube and unicast

Security goals

- Applications: satellite and cable TV, Internet TV, peer-to-peer content distribution, GPS/Galileo, teleconference
- Access control to multicast and broadcast data
- Data authentication
- DoS protection access control for senders
- Privacy confidentiality of subscriber identities (which channel is my neighbor watching?)

Access control to data

- Goal: allow only authorized access to data
- Encrypt data, distribute keys to authorized recipients (= multicast group)
- Key distribution issues:
 - Revocation speed
 - Amount of communication and computation per joining or leaving node
 - Scalability (teleconference vs. satellite TV broadcast)
 - Possible packet loss when session keys are replaced
 - Sharing keys to unauthorized parties is easier than sharing data

Group key distribution

- Various efficient protocols for distributing keys to a multicast group
- Typical solution: unicast key distribution to individual subscribers
 - Ok for small groups (e.g. teleconference) or slow updates (e.g. **IPTV** subscription)
- Can piggyback individual key updates on multicast data Does not require separate unicast channel
 - Ok for slow updates (e.g. satellite TV)
- Advanced protocols
- Typically log(N) communication to revoke one receiver out of N

Multicast and broadcast authentication

Multicast data authentication

Security goals:

- Integrity, data-origin authentication
- Sometimes non-repudiation
- Early dropping of spoofed data
- Other constraints:
 - Loss tolerance vs. reliable transmission
 - Real-time requirements
- Small groups could use a shared key and MACs
 - Every member can spoof data
 - Won't work for large or mutually distrusting groups
- Asymmetric crypto seems the right tool
 - One sender and many receivers

- Forward chaining
- Amortize the cost of a signature over many data packets
- Sender can send in real time

H1

- Receiver should buffer data and consume only after signature received Received vulnerable to DoS from spoofed packets

H3 data

- Backward chaining Received can authenticate and consume data immediately
 - Sender must buffer data before sending and signing H2

data

Guy Fawkes protocol (2)

- Out-of-band initialization: • Sender selects a random X_0 and computes Y_0 = hash (X_0) Sender publishes Y₀ via an authenticate channel
- Protocol round i=1,2,3,...:
 - 1. Sender selects a random X_i and computes $Y_i = hash(X_i)$
 - 2. Sender publishes in a newspaper $Z_i = MAC_{X_{i-1}} (M_i, Y_i)$
 - 3. Sender reveals M_i, hash(X_i), X_{i-1}
- Z_i is a commitment that binds the message M_i and the secret X_{i-1}. Revealing X_{i-1} later authenticates M_i.
- The next key M_i authenticated together with X.
- Oritical:
 - Each Z_i must be received before X_{i-1} revealed

Lamport hash chain

- [Leslie Lamport 1981] ٢
- One-time passwords for client-server authentication
- Initialization:
 - Random number X₀
 - Hash chain X_i = h(X_{i-1}), i=1...n
 - Server stores X_n
- Client reveals hashes in reverse order: X_{n-1}, X_{n-2},...
- Protects against password sniffing
 - Cannot reuse like a normal password
 - Better than all random passwords X₁, X₂,... because the password database (/etc/password) can be public
- Entity authentication only; not easy to combine with key exchange

TESLA(1)

- Time efficient stream loss-tolerant authentication [Perrig et ٥ al. 2000][RFC 4082]
- After initialization, secret-key crypto (cryptographic hash and ٥ MACs) only
- Delayed authentication: broadcast sender commits to MAC ٥ keys and reveals them after a fixed delay Authentication delay at least one round-trip time (RTT) MAC keys come from a hash cha
- Requires loose clock synchronization Authentication delay must be set to > maximum clock skew
- No buffering of data at sender; buffering for a fixed period at ٥ the receiver
- Tolerates packet loss ٥
- ٥ Scales to any number of receivers
- No non-repudiation ٥

Access control for senders

- Multicast is a mechanism for traffic amplification → can be used for DoS attacks to consume bandwidth
- One-root solution: the root node of the multicast tree authenticates senders and checks for authorization
 - One sender, or the root node relays data from all senders
 - Ok for satellite broadcast but no such root exists for IP multicast in the Internet, for many-to-many communication, or for peerto-peer content distribution
 - Authentication of data at each router needed to avoid insertion of false data → maybe too expensive
- Reverse path forwarding: each router checks the routing table for the source address and decides whether then packet came from the right direction
 - Prevents some spoofing attacks
 - Needed to prevent routing loops anyway

Non-crypto access control for receivers

- A multicast receiver could subscribe to a large number of multicast streams
 - Packet flood to the location of the receiver
 - Either free, unencrypted streams or streams of encrypted packets it cannot decrypt
- Need some way of limiting subscriptions at the receiver end

Exercises

- Combine backward and forward chaining to divide the buffering requirement between sender and receiver
- How could a criminal organization use cryptography to make a series of anonymous but plausible threats? (Hint: Guy Fawkes was a 17th century terrorist)
- If the receiver has no capability for public-key operations, how would you initialize TESLA?

Anonymity and privacy

Anonymity terminology

- Identity, identifier
- Anonymity they don't know who you are
- Unlinkability they cannot link two events or actions (e.g. messages) with each other
- Pseudonymity intentionally allow linking of some events to each other
- E.g. sessions, payment and service access
- Authentication strong verification of identity
 Weak identifier not usable for strong authentication
- Weak identifier not usable for strong authentication but may compromise privacy
- E.g. nickname, IP address, SSID, service usage profile
- Authorization verification of access rights
- Does not always imply authentication

Anonymity in communications

- Anonymity towards communication peers
 - Sender anonymity receiver does not know who and where sent the message
 - Receiver anonymity can send a message to a recipient without knowing who and where they are
- Third-party anonymity an outside observer cannot know who is talking to whom
 - Unobservability an outside observer cannot tell whether communication takes place or not
 - Strength depends on the capabilities of the adversary
- Anonymity towards access network
 Access network does not know who is roaming there
- Relate concept: location privacy

Privacy

- Control over personal information
 - Emphasized in Europe
 - Gathering, disclosure and false representation of facts
 about one's personal life
- Right to be left alone
 - Emphasized in America
 - Avoiding spam, control, discrimination, censorship
- Anonymity is a strong tool for achieving privacy
 - Blending into the crowd

Strong anonymity?

- Anonymity and privacy of communications mechanisms are not strong in the same sense as strong encryption or authentication
- Even the strongest mechanisms have serious weaknesses
 - Need to trust many others to be honest
 - Services operated by volunteers and activists
 - Side-channel attacks
- Anonymity tends to degrade over time for persistent communication

Weak identifiers

- Lack of strong authentication does not imply anonymity
- Persons or computers can be identified by weak (i.e. implicit) identifiers:
 - Non-unique names, nicknames, usernames, computer names, domain names, addresses
 - Profile of the software and hardware, collected either by passive sniffing or active probing
 - Profile of the network communication and services used
- Weak identifiers are everywhere...

Identity protection in key exchange

- Identity protection against passive observers achieved by encrypting the authentication with a Diffie-Hellman key or a secret send with public-key encryption
- Identity protection of one party against active attackers achieved by authenticating the other party first
- Recall these protocols:
 - PGP
 - TLS/SSL
 - IKEv2Kerberos
 - WPA2
- Lower-layer identifiers (MAC and IP address) can still leak identity
- Traffic analysis can still be used to profile the node

Randomized identifiers

- Replace permanent identifiers with random pseudonyms
- Especially important below the encryption layer
 - Random interface id in IPv6 address [RFC 4941]
 - Random MAC addresses suggested
- Need to consider weak identifiers, too
 - E.g., IPID, TCP sequence number

High-latency anonymous routing

FIFO order of delivering messages

Trusting the mix

- The mix must be honest
- Example: anonymous remailers for email
 anon.penet.fi 1993–96
- → Route packets through multiple mixes to avoid single point of failure
- Attacker must compromise all mixes on the route
 - Compromising almost all may reduce the size of the anonymity set

Mix networks

- Mix cascade all messages from all senders are routed through the same sequence of mixes
- Good anonymity, poor load balancing, poor reliability
 Free routing each message is routed independently via multiple
 mixes
- Other policies between these two extremes
- Onion encryption:
 - Alice \rightarrow M1: $E_{M1}(M2, E_{M2}(M3, E_{M3}(Bob, M)))$
 - M1 \rightarrow M2: $E_{M2}(M3, E_{M3}(Bob, M))$
 - M2 \rightarrow M3: E_{M3}(Bob,M)
 - M3 → Bob: M
 - Encryption at every layer must provide bitwise unlinkability
 → detect replays and check integrity
 - → for free routing, must keep message length constant
- Re-encryption mix special crypto that keeps the message length constant with multiple layers of encryption

Sybil attack

- Attack against open systems which anyone can join
 Mixes tend to be run by volunteers
- Attacker creates a large number of seemingly independent nodes, e.g. 50% off all nodes → some routes will go through only attacker's nodes
- Defence: increase the cost of joining the network:
 - Human verification that each mix is operated by a different person or organization
 - The IP address of each mix must be in a new domain
 Require good reputation of some kind that takes time and effort to establish
 - effort to establish
 Select mixes in a route to be at diverse locations
 - Sybil attacks are a danger to most P2P systems
 - E.g. reputation systems, content distribution

ontent distribution

Other attacks

(n-1) attack

- Attacker blocks all but one honest sender, floods all mixes with its own messages, and finally allows one honest sender to get though → easy to trace because all other packets are the attacker's
- Potential solutions: access control and rate limiting for senders, dummy traffic injection, attack detection
- Statistical attacks
 - Attacker may accumulate statistics about the communication over time and reconstruct the senderreceiver pairs based on its knowledge of common traffic patterns

٩

Receiver anonymity

- Alice distributes a reply onion: $E_{M3}(M2,k2,E_{M2}(M1,k1,E_{M1}(Alice,k3,E_{Alice}(K))))$ Messages from Bob to Alice:
- Bob \rightarrow M3: E_{M3}(M2,k2,E_{M2}(M1,k1,E_{M1}(Alice,k3,E_{Alice}(K)))), M $M3 \rightarrow M2$: $E_{M2}(M1,k1,E_{M1}(Alice,k3,E_{Alice}(K))), E_{k1}(M)$ $M2 \rightarrow M1: E_{M1}(Alice, k3, E_{Alice}(K)), E_{k2}(E_{k1}(M))$ $M1 \rightarrow Alice: E_{Alice}(K), E_{k3}(E_{k2}(E_{k1}(M)))$ Alice can be memoryless: ki = h(K, i)

Low-latency anonymous routing

Tor

- "2nd generation onion router" ٥
- Mix networks are ok for email but too slow for interactive 0 use like web browsing
- New compromise between efficiency and anonymity: 0 No mixing at the onion routers
 - All packets in a session, in both directions, go through the same • routers
 - Short route, always three onion routers . Tunnels based on symmetric cryptography
 - . No cover traffic

 - Protects against local observers at any part of the path, but vulnerable to a global attacker
- More realistic attacker model: can control some nodes, can sniff some links, not everything
- SOCKS interface at clients \rightarrow works for any TCP connection ٥

Tor limitations (2)

- Client must know the addresses and public keys of all onion routers
 - If client only knows a small subset of routers, it will always choose all three routers from this subset → implicit identifier
 - E.g. client knows 10 out of 1000 routers = 1%
 → Attacker in control of the last router can narrow down the client identity to (0.01)² = 0.01% of all clients
 → Attacker in control of two last routers can narrow the client identity down to (0.01)³ = 0.0001% of all clients
- DNS leaks information to the access network
- Blacklisting of entry or exit nodes

Applications of anonymous routing

- Censorship resistance, freedom or speech
- Protection against discrimination, e.g. geographic access control or price differentiation
- Business intelligence, police investigation, political and military intelligence
- Whistle blowing, crime reporting
- Electronic voting
- Crime, forbidden and immoral activities?

Exercises

- What is the entropy of a pool mix that has threshold k?
- How does the strength of anonymity protection in a mix network change as a function of the route length?
 - Consider attackers who own 10% or 90% of mixes. Also, longer routes have more failures. How could that affect anonymity?
- Tor does not protect against fingerprinting or watermarking of packet streams. How would anonymity in Tor change if we used 1,2,3,or more routers?
- Install Tor client on your machine and try using it